Math 131A-1: Homework 1

Due: January 9, 2015

1. Send me an e-mail introducing yourself. Let me know if you like to be called something other than your registrar listing, and anything you think I should know about your background.
2. Read Sections 1-3 in Ross.
3. Do problems 1.4, 1.8, 1.11 in Ross.
4. Prove Bernoulli's inequality: For $x \in \mathbb{R}$ with $x>0$, and every $n>1,(1+x)^{n}>1+n x$.
5. Incorrect Inductions
(a) Consider the following inductive "proof" that all horses are the same color. We will show that any set of n horses have the same color. The base case is trivial, since any set consisting of a single horse has only one color. Now suppose that all sets of $n-1$ horses have only one color. Then if $A=\left\{x_{1}, \cdots x_{n}\right\}$ is a set of n horses, consider the subsets $A_{1}=\left\{x_{1}, \cdots, x_{n-1}\right\}$ and $A_{2}=\left\{x_{2}, \cdots, x_{n}\right\}$. Since each of A_{1} and A_{2} contain $n-1$ horses, all horses in A_{1} must be the same color and all horses in A_{2} must be the same color. And these sets overlap, so in fact all horses in A must be the same color. Therefore there is no horse of a different color!

Explain why this is not a valid inductive proof.
(b) Consider the following inductive "proof" that all natural numbers are interesting. To begin with, the first case $n=1$ is clearly satisfied, since 1 is a very interesting number. Next, suppose there are uninteresting natural numbers. Then there must be a smallest such number, call it n. But n is the smallest uninteresting natural number, which is clearly an interesting thing to be! Therefore there aren't any uninteresting natural numbers.

Explain, in words, why this isn't a valid mathematical proof.

